Simulating Complex Flows in the Earth Mantle

On long enough time scales, the Earth mantle (the region between the rigid plates at the surface and the liquid metal outer core at depth) behaves like a fluid. While it moves only a few centimeters per year, the large length scales nevertheless lead to very large Rayleigh numbers and, consequently, very complex and expensive numerical simulations. At the same time, given the inaccessibility of the Earth mantle to direct experimental observation implies that numerical simulation is one of the few available tools to elucidate what exactly is going on in the mantle, how it affects the long-term evolution of Earth's thermal and chemical structure, as well as what drives and sustains plate motion.

I will here review the approach we have taken in building the state-of-the-art open source solver ASPECT (see http://aspect.geodynamics.org) to simulate realistic conditions in the Earth and other celestial bodies. ASPECT is built using some of the most widely used and best software libraries for common tasks, such as deal.II for mesh handling and discretization, p4est for parallel partitioning and rebalancing, and Trilinos for linear algebra. In this talk, I will focus on the choices we have made regarding the numerical methods used in ASPECT, and in particular on the interplay between higher order discretizations on adaptive meshes, linear and nonlinear solvers, optimal preconditioners, and approaches to scale to thousands of processor cores. All of these are necessary for simulations that can answer geophysical questions.

Dr. Wolfgang Bangerth - Professor, Department of Mathematics at Colorado State University

Dr. Wolfgang Bangerth is a Professor in the Mathematics Department at Colorado State University. He is a computational scientist with primary interests in developing methods and widely usable software for the numerical solution of partial differential equations by the finite element method. Dr. Bangerth is the principal author and maintainer of the popular deal.II finite element software library, which is received the 2007 J. H. Wilkinson Prize for Numerical Software and has been used in about 800 scientific papers covering practically all areas of the sciences and engineering. He is also the principal author of the open source code ASPECT, which is primarily used for simulating convection in the Earth's mantle. Dr. Bangerth is a Sloan Fellow and has served on the editorial boards of the top journals in scientific computing.

The Computing Colloquium Series is sponsored by the Graduate College, College of Arts and Sciences and College of Engineering.